|
|
|
目前位置:首頁 >
【國家精品課程】 > 基礎科學 > 物理.化學.數學.光學 |
|
|
課程名稱: 線性代數與數學文化 |
|
課程編號: |
AS_0860 |
系列: |
國家精品課程 |
授課學校: |
瀋陽工業大學 |
集數: |
全 10 集 |
授課語言: |
中文 |
光碟版: |
1 片教程光碟(flv檔) |
|
簡 介: |
本講座在介紹線性代數的主要內容的同時,突顯線性代數蘊涵的文化成份、辯證思想,以期同學通過本講座感悟利用利用辯證唯物主義與歷史唯物主義思想、方法分析問題解決問題的.......... |
|
網路版: |
NT$ 330 元
|
購 買: |
|
|
光碟版: |
396 元(優惠中)
|
|
光碟版 配送服務僅供(台灣地區) |
|
訂購說明: |
◎優惠期間中!各版本為均一價,請於結帳時註明
◎網路版→Youtube版-無限期使用-,請備記Gmail帳號
◎光碟版→各國(地區)暫不提供光碟配送服務
◎下載版→由Google 雲端硬碟下載,(請備記
Gmail帳號) 訂購多套另附--贈送課程
|
|
喜歡這門課程嗎?按分享推薦給你的朋友吧!
|
|
|
|
→課程名稱: |
線性代數與數學文化 |
→共 10
堂課 |
→瀋陽工業大學 |
"國家級" 精品教學影片 |
課程為中文字幕,發音為純正國語, 如同身處在大學課堂上課般輕鬆學習!(HD版本,附字幕檔) |
本講座在介紹線性代數的主要內容的同時,突顯線性代數蘊涵的文化成份、辯證思想,以期同學通過本講座感悟利用利用辯證唯物主義與歷史唯物主義思想、方法分析問題解決問題的實際意義,從而能更好的理解數學知識的內涵,更好的將數學知識運用自己於專業學習中,提高自己的專業水平與能力。 |
第1講 線性代數簡介
主要介紹線性代數課程的主要內容,數學處理問題的理念及相關的數學文化。提出線性代數的中心是解決線性方程組解的三個基本問題(解的存在性問題、解的數量問題、解的公式問題)及解決問題的三個基本方法(行列式方法、矩陣方法、向量方法)。
品味數學中「算」的含義的多樣性、相對性, 數學中的科學性與正確性的辯證關係等。
第2講 利用行列式解線性方程組
介紹行列式定義的由來及內容,利用行列式解決線性方程組的三個基本問題,解的存在性問題、解的數量問題、解的公式問題,及優缺點分析。從數學家們發現問題、提出問題、分析問題,解決問題的曲折過程中感悟到數學的實實在在,
並不枯燥、抽像。兩講中,前一講著重思想及文化方面,後一講著重具體的方法及技巧。
第3講 利用矩陣解線性方程組
介紹矩陣的四則運算,特別是乘法運算定義的由來(從而除法的含義基本上就確定了),及利用矩陣解決線性方程組的三個問題的具體過程,及優缺點分析。體悟到非數的運算在解決問題中的巧妙之處及運算定義中的公理化思想。兩講中,前一講著重思想及文化方面,後一講著重具體方法及技巧。
第4講 利用向量解線性方程組
介紹向量的運算,及利用向量解決線性方程組的三個問題的具體過程,及優缺點分析。領悟到向量空間的維數與自然空間的維數的辯證關係。兩講中,前一講著重思想及文化方面,後一講著重具體方法及技巧。
第5講行列式的計算
介紹行列式定義的由來及內容,利用行列式解決線性方程組的三個基本問題,解的存在性問題、解的數量問題、解的公式問題,及優缺點分析。從數學家們發現問題、提出問題、分析問題,解決問題的曲折過程中感悟到數學的實實在在,
並不枯燥、抽像。兩講中,前一講著重思想及文化方面,後一講著重具體的方法及技巧。
第6講 矩陣的計算
介紹矩陣的四則運算,特別是乘法運算定義的由來(從而除法的含義基本上就確定了),及利用矩陣解決線性方程組的三個問題的具體過程,及優缺點分析。體悟到非數的運算在解決問題中的巧妙之處及運算定義中的公理化思想。兩講中,前一講著重思想及文化方面,後一講著重具體方法及技巧。
第7講 向量空間的計算
利用向量解線性方程組:介紹向量的運算,及利用向量解決線性方程組的三個問題的具體過程,及優缺點分析。領悟到向量空間的維數與自然空間的維數的辯證關係。兩講中,前一講著重思想及文化方面,後一講著重具體方法及技巧。
第8講 利用三種方法討論線性方程組的三個問題
利用三種方法綜合討論線性方程組的三個問題;並進一步討論無解線性方程組的最小誤差解問題。
第9講 對稱矩陣的應用:二次型問題
介紹矩陣的一個經典應用,化二次型為標準形的具體過程。展示矩陣如何運用到具體問題中,如何發揮作用。使同學感覺到矩陣是數學中的一個可以雅俗共賞的對象,它也是一個有力的工具,利用它解決問題,方法往往很簡單,指出「簡單」的相對性。
第10講 線性變換
指出它實際上是方矩陣的簡潔表達形式,通過它也可以給出線性代數的一個統一的認識,進一步闡述其中的數學文化及理念。 |
|
|
|
|
|
|
|
|
|
|
|
易學族課程網 http://www.estu.com.tw/
易學族自學網 http://www.estucourse.com/
電子信箱: estuLearn@gmail.com
Copyright © 2017
Estu. All Rights Reserved
|
|
|